Skip to main content

QFE and Shor's Algorithm

Quantum Phase Estimation

There are some special vectors, called eigenvectors, where applying the XX gate results in the exact same vector, multiplied by a by a number called an eigenvector. For example, +\ket{+} is an eigenvector of the XX gate.

X+=(0110)(1212)=(1212)=+\begin{align} X\ket{+} &= \begin{pmatrix} 0 & 1 \\1 &0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \ket{+} \end{align}

The goal of phase estiamtion is:

Given a unitary matrix UU and an eigenvector ψ\ket{\psi}, find ϕ\phi such that Uψ=eiϕψU\ket{\psi} = e^{i\phi}\ket{\psi}

Represnting the phase
From binary number to decimal number:

a12+a24++an2n=0.a1a2an\frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n} = 0.a_1a_2\dots a_n

Shor's algorithm

Period Finding periodic function

f(x)=axmodNf(x) = a^x mod N

where a and N are positve integers, a is less than N, and they have no common factors. The period, or order(rr), is the Smallest (non zero) integer such that:

armodN=1a^r mod N = 1

Shor's solution was to use quantum phase estimation on the unitary operator:

Uyay mod NU|y \rangle \equiv |ay \ mod \ N \rangle

Shor's Algorithm in quantum circuit alt text

Measurement outcome

  • Upper register m: outputs binary number to find r

  • Lower register: n: outputs outcome of fa,Nf_{a,N}

m: outcome M: number of qubits in upper register

kr=m2M\frac{k}{r} = \frac{m}{2^M}

Quantum states during the circuit

ψ0=0m,0n|\psi_0 \rangle = |0_m , 0_n \rangle ψ1=x{0,1}mx,0n2m| \psi_1 \rangle = \frac{\sum_{x \in \{0,1\}^m} |x, 0_n \rangle}{\sqrt{2^m}} ψ2=x{0,1}mx,axMod N2m|\psi_2 \rangle = \frac{\sum_{x \in \{0,1\}^{m}} | x, a^x \text{Mod N} \rangle}{\sqrt{2^m}}

·

ψ3=j=02m/r1t0+jr,axˉModN2mr|\psi_3\rangle = \frac{\sum_{j=0}^{2^m/r - 1} |t_0 + jr, a^{\bar{x}} \, \text{Mod} \, N \rangle}{\left\lfloor \frac{2^m}{r} \right\rfloor}

Example For N = 15, we will have n = 4 and m = 8. For a = 13, the state ψ2|\psi2\rangle will be

0,1+1,13+2,4+3,7+4,1++254,4+255,7256\frac{|0, 1\rangle + |1, 13\rangle + |2, 4\rangle + |3, 7\rangle + |4, 1\rangle + \dots + |254, 4\rangle + |255, 7\rangle}{\sqrt{256}}

After measurement of the bottom qubits, 7 is found

3,7+7,7+11,7+15,7++251,7+255,7[2564]\frac{|3, 7\rangle + |7, 7\rangle + |11, 7\rangle + |15, 7\rangle + \dots + |251, 7\rangle + |255, 7\rangle}{\left[ \frac{256}{4} \right]}