Learning Notes
Home
Home
  • Guide
    • Shortkeys
    • Commands
  • Cpp
    • Basic
    • Scope, Duration, and Linkage
    • Pointers(1)
    • Pointers(2)
  • Rust Learning
    • 1.Number Types
    • 2.Ownership
    • 3.Struct
    • 4.Enum
    • 5.Package-management
    • 6.Vector
    • 7.Error handle
    • 8.Trait 泛型
    • 9.Life time
    • 10.Test
    • 11.Minigrep
    • 12.Closure 闭包
    • 13.Smart pointer 智能指针
    • 14.Fearless concurrency 无畏并发
  • Quantum Computing
    • Basic computing and quantum computing Theory
    • Teleportation
    • QKD and QFT
    • QFE and Shor's algorithm
    • QAOA
    • Quantum algorithms
    • Week 11
  • Statical Machine Learning
    • Bayesian Linear Regression
    • Linear regression and logistic regresion
    • Bais
    • SVM, Kernel Methods
    • Precepction and Artificial Neural Network
    • Cross validation, experts learning, MAB
    • Bayesian inference
    • GMM-EM
    • final
  • Software Project Management
    • Lecture
    • Revision
  • AI-planning
    • Classical planning
    • MDP and reinforcement learning
    • Game theory and final recap

QFT

在经典计算中,傅里叶变换用于将信号从时域转换到频域
量子傅里叶变换的数学定义

∣ψ⟩=∑j=0N−1aj∣j⟩⟶∣ϕ⟩=∑k=0N−1ϕk∣k⟩=1N∑k=0N−1∑j=0N−1aje2πijk/N∣k⟩ |\psi\rangle = \sum_{j=0}^{N-1} a_j |j\rangle \longrightarrow |\phi\rangle = \sum_{k=0}^{N-1} \phi_k |k\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} a_j e^{2\pi i jk / N} |k\rangle ∣ψ⟩=j=0∑N−1​aj​∣j⟩⟶∣ϕ⟩=k=0∑N−1​ϕk​∣k⟩=N​1​k=0∑N−1​j=0∑N−1​aj​e2πijk/N∣k⟩

通过上述公式 QFT 把 基态转化为:

∣j⟩⟶1N∑k=0N−1e2πijk/N∣k⟩ \ket{j} \longrightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i jk / N} \ket{k} ∣j⟩⟶N​1​k=0∑N−1​e2πijk/N∣k⟩

QFT 性质:

QFT†QFT=I. \text{QFT}^\dagger \text{QFT} = I. QFT†QFT=I.

Inverse Quantum Fourier Transform

IQFT does the reverse:

1N∑k=0N−1e2πijk/N∣k⟩⟶∣j⟩ \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i jk / N} \ket{k} \longrightarrow \ket{j} N​1​k=0∑N−1​e2πijk/N∣k⟩⟶∣j⟩

Quantum Phase Estimation, QPE

量子相位估计算法的主要目标是:给定一个酉算符 U 及其本征态 ∣ψ⟩\ket{\psi}∣ψ⟩ 精确地估计对应的本征值的相位 θ\thetaθ

Shor’s algorithm 的整体思路

Shor算法将整数因数分解问题转化为周期发现问题。具体步骤如下:

  1. 随机选择一个整数 aaa , 满足 1<a<n1<a<n1<a<n

    • 如果 gcd(a,N)≠1(a,N) \not= 1(a,N)=1 , 则a和NNN不互质,直接得到一个因数
    • 否则, 下一步
  2. 找到函数 f(x)=axf(x) = a^xf(x)=ax mod NNN 最小正周期 rrr

    • 也就是找到最小的正整数 rrr ,使得 ar≡1a^r \equiv 1ar≡1 mod NNN
  3. 利用周期 rrr 来找到 NNN 的因数

    • 如果 rrr 是偶数, 且 ar/2≢−1a^ {r/2} \not \equiv -1ar/2≡−1 mod NNN , 则:

      gcd(ar/2±1,N)(a^{r/2} \pm 1 , N)(ar/2±1,N) 将给出N的非平凡因数

Last Updated:
Contributors: pingzhihe
Prev
QAOA
Next
Week 11